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Classical Coulomb Systems Near a Plane Wall. I 

B. Jancov ic i  1 
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The equilibrium structure of classical Coulomb systems bounded by a plane wall 
is studied near that wall. Several models are considered: the two-dimensional 
one-component plasma at a special value of the coupling constant (which makes 
the model exactly soluble), the two-dimensional and three-dimensional one- 
component and two-component plasmas in the weak-coupling limit (a Debye- 
Hfickel type of approach is then used). Along a wall, the pair correlation 
functions decay only as an inverse power of the distance r, namely, as r -~ for a 
v-dimensional system (v = 2, 3). The one-body densities are also studied; the 
first BGY equation is used. 

KEY WORDS: Coulomb systems; plasmas; surface properties; walls; cor- 
relations; density. 

1. INTRODUCTION 

In the equilibrium statistical mechanics of bulk Coulomb systems (plas- 
mas), screening plays a central role. Although the Coulomb force is 
long-ranged, the correlations have a fast decay. This decay is believed to be 
exponential in many cases (see, e.g., Ref. 1), and such a behavior (Debye 
screening) has indeed been rigorously proved (2) for a classical weakly 
coupled system. For a classical two-dimensional one-component plasma, 
when the coupling constant has the special value F = 2, an explicit exact 
calculation is feasible, (3'4) and a still faster decay, a Gaussian one, is found. 

In this paper, the equilibrium properties are studied near a plane wall. 
The behavior of a Coulomb system near a wall is of interest, for instance, 
for describing an electrolyte near a colloidal wall or near an electrode plate. 
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In the present paper, the charges on the wall, if any, are considered as 
immobile (insulating wall). The pair correlation functions are computed for 
several classical models, and are shown not to behave in the same way as in 
the bulk system. In the direction parallel to the wall, the pair correlation 
functions are found to decay only as an inverse power of the distance r, 
namely, as r -p for a v-dimensional system (v =2,3);  a fast decay still 
occurs in any other direction. This slow decay can be qualitatively under- 
stood as a consequence of asymmetry effects. The screening cloud which 
surrounds a particle sitting near the wall is prevented by the wall from 
being spherically symmetrical, and the particle plus cloud system has a 
nonvanishing electrical dipole moment. This dipole moment cannot be 
assumed to be strongly localized, because a dipole moment creates far away 
an electrical field decaying only as an inverse power law, and this field 
would induce a remote charge distribution, in contradiction to the assump- 
tion of strong localization. Therefore, the pair correlation functions cannot 
have a fast decay in every direction. 

Near a wall, the one-body densities are also of interest. The one-body 
densities are related to the pair correlation functions by the first equation of 
the Born-Green-Yvon (BGY) hierarchy. Here, this equation is used for 
determining the one-body densities near a wall for several models of weakly 
coupled plasmas. 

We shall be interested in the structure of the plasma near an infinite 
plane wall, assuming that the state is invariant under translations parallel to 
the wall. Far from the wall, in the bulk plasma, the total charge density will 
be zero, but, in general, departures from neutrality will occur in the 
neighborhood of the wall. It is reasonable to expect that the equilibrium 
structure of the surface layer of the plasma will be determined by its net 
surface charge density but will not depend on the way in which this surface 
charge density has been attained. Consider for instance a slab of plasma 
between two distant parallel infinite plates A and B. If plate A is charged 
with a surface charge density o and plate B with - a ,  layers with surface 
charge densities - ~ and ~ will be induced in the plasma near plates A and 
B, respectively. Another possible situation is that both plates are un- 
charged, but an appropriate excess of charged particles of one kind has 
been introduced in the plasma; they concentrate near the walls, and form 
layers with equal surface charge densities o near each plate. In both 
situations, one should expect the layer with surface density o near plate B 
to look exactly the same. The general expectation that the structure of a 
surface layer is determined by its net surface charge density will be 
vindicated in a special case in Section 2. 

The models which are considered are, in succession, in Section 2 the 
two-dimensional one-component plasma with a coupling constant F = 2 
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(for which exact results can be obtained); in Section 3 the weakly coupled 
one-component plasma in two or three dimensions; and in Section 4 the 
weakly coupled symmetrical two-component plasma in two or three dimen- 
sions. 

2. THE TWO-DIMENSIONAL ONE-COMPONENT PLASMA AT F = 2 

2.1. The Model 

The model is a system of N identical particles of charge e embedded in 
a uniform neutralizing background of opposite charge, in two dimensions. 
The Coulomb potential between two particles at a distance r from one 
another is, in two dimensions, 

v(r)  = - e 2 I n ( r / L )  

where L is a length scale. The dimensionless coupling constant is F = 
fie 2, where fl = 1 / k B T  (k  B is Boltzmann's constant and T is the temper- 
ature). At the special value F = 2, the equilibrium statistical mechanics 
of the model can be worked out exactly. The bulk properties (4'5) and 
the one-body density near a w a l l  (6) have been previously studied. Here, the 
two-body density near a wall will be investigated, through the same 
approach, which will be briefly recalled. 

We consider a system of N particles of charge e in a disk of radius R. 
The disk is filled with a background of uniform charge density - ep; p may 
be different from the particle number density N/~rR 2, and therefore the 
system may carry a nonzero net charge. We define the length a by 
p = 1/Tra 2. In the whole Section 2, we express all distances in units of a (in 
those units, O = 1/~). For the time being, the origin is at the center of the 
disk, and the position of the ith particle is r i. The potential energy is 

e2 N 
V =  Vo+ 7 ~ , r } - e  2 ~ lnlr,-rsl (2.1) 

i=1 N >>.i>j>~ I 

where V0 is a constant; the second term in the right-hand side of (2.1) 
comes from the particle-background interaction. Each r i is in the range 
(0,R). 

It is convenient to represent ri by a complex number Zi in the usual 
way: we set Z i = riexp(iOi), where (r~,O~) are the polar coordinates of r,.. 
When F - -  e Z / k B T  = 2, one obtains from (2.1) a Boltzmann factor 

exp(-Vlk,,7")=Aexp(- lZ, l )lHs(Z,- Zj)l  (2.2) 
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where A is a constant. The 

I - I  ( Z ;  - Z j )  = Det 
i>j  

1 1 1 

ZI Z 2 Z 3 

z? z} 
�9 , , 

z (  r 

)roduct in (2.2) is a Vandermonde determinant 

�9 �9 * 1 

�9 o. Z N 

. . -  Z~ (2.3) 

which can be expanded as a sum of permutations: 

I I ( z ;  Z j ) =  7o7,72 �9 Z ; - '  - ~ ' l  ~ 2 " - ' 3  " " + " �9 �9 ( 2 . 4 )  
i>j  

The computation of the n-body density 

N !  f e x p ( - f l V ) d r . + ~  . . . d r N  (2.5) 
P(n)(rl'r2 . . . . .  rn) - ( N -  n)! f e x p ( - f l V ) d r l  . . . dr N 

involves angular integrations which are easily performed, using (2.4) in (2.2) 
and the orthogonality property 

f0 2~r p *q Z i Z i dO i = 2"It ~pqr? p (2.6) 

One is left with radial integrals which are incomplete gamma functions 

R 2 
7 ( l +  1 ,R2)= foReXp(-r2)r2'2rdr= fo e-Uu' du (2.7) 

One finds for the n-body density 

p(n)( r , , r2 , . . . ,  rn)= 0"exp( -  i=1 ~ [Zi[2) D e t [ K ( Z i Z ~ ) ] i ' j = l  . . . . . .  (2.8) 

where 
N-1 (ZiZj, )l 

K ( Z i Z ;  ) = E (2.9) 
l=0 Y(l+ 1,R 2) 

More explicit expressions for the one-body and two-body densities will 
now be obtained for semiinfinite systems bounded by different kinds of 
walls. 

2.2. Plane Hard Wall 

A plane hard wall is obtained from the circular wall of radius R which 
surrounds the disk by taking the limit R ~ oo. Since we want to allow for a 
possible net "surface" charge density eo along the wall, the number of 
particles must be 

N = R 2 + 2~oR (2.10) 
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we expect the excess charge 27reoR to concentrate near the wall. The limit 
to be taken is R ~ m, N ~  m, while 0 and o keep constant values. Since we 
want to study the structure near the wall, we take a new origin on the wall, 
and define the position of the ith particle by a shifted complex variable z i 
such that 

Z i = - g  -Jr- z i (2.11) 

as R ~ ce, zi is kept to a constant value. From the new origin on the wall, 
we draw an x axis normal to the wall (and directed towards the inside of 
the plasma) and a y axis along the wall; therefore z i represents a vector of 
Cartesian components (x i, y~) drawn from the new origin, such that z i 
= Xi q- i.y i. 

We want to compute the densities (2.8) in the above-described limit. In 
this limit, the dominant values of l in the sum (2.9) are close to R 2 and the 
incomplete gamma function can be replaced by an asymptotic form, which 
is valid for l - R 2 = O(R), and which is obtained by writing the integrand 
of (2.7) as e x p ( - u  + l lnu) and expanding - u  + l lnu around its maxi- 
mum at u = l up to the order (u - l)2. One finds 

3,(l+ l , R 2 ) = t ~ )  • e x p t - l + l l n l )  1 + ~  + O  

(2.12) 
where �9 is the error function 

�9 (t) = 2~r - ' / 2 s  t exp( - u 2) du (2.13) 

Using (2.12) in (2.9), we obtain 

e x p ( -  Z,. Zj* )K(Z~Zj* ) 

2 xt /2N- '  exp ( -Z iZ j*  + llnZiZj* + l - / I n / )  
(2.14) 

Expanding the argument of the exponential in (2.14) with respect to l 
around its maximum at I = ZiZ 7 up to the order (l - ZiZ~) 2, replacing the 

sum upon l by an integral upon t = (R 2 - l)IR~!-2, and discarding terms of 
order 1 / R, one obtains, in the limit R --> ~ ,  

= ) 
e x p ( -  ZiZ 7 )K(ZiZj* )= ~ f~ro~/2 1 + ~(t)  dt 

(2.15) 
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Using (2.15) in (2.8), we obtain the one-body density 

2 ~ e x p [ - ( t - x ~ - )  2 ] 
P(O(x) = P j  Y'-~o~ 1 + O(t) dt (2.16) 

at a distance x from the wall, and the two-body density 

p ( 2 ) ( Z l , Z 2 )  = p ( l ) ( x l ) p ( I ) ( x 2 )  - -  exp ( - [ z  1 - z2[2)[p(l)[(zl + zr 
(2.17) 

for two particles the positions of which are defined by z~ = x I + iy~ and 
a 2 = X 2 -{- iv 2 , 

The one-body density (2.16) has already been studied in Ref. 6. As 
expected, the excess charge in the plasma, if any, concentrates near the 
wall. The one-body density departs from its bulk value 0 only in a surface 
layer, the thickness of which is of the order of a, the average interparticle 
distance in the bulk. 

The truncated two-body density is, from (2.17) and (2.16), 

o 2)(z,,z2) 
= W2 (z,, : 2 )  - 

= -p2exp[--(X l - -  X2)  2 ]  

2 

I 2 ~ exp{-[t-(x'+x2)/~-2]2-it(yl-Y2)vt-2} dt 
• I + ,(,) 

(2.18) 

If both particles are far away from the wall (x,,Xz>> 1), the bulk expres- 
sion (4) 

p ( 2 ) ( Z l , e 2 )  = - p Z e x p [ - ( x ] -  x2)  2 -  ( Y l - - Y 2 )  2] (2.19) 

is recovered. Here, we are especially interested in the asymptotic behavior 
of (2.18) when particle 1 stays at a fixed position near the wall while 
particle 2 goes to infinity. If particle 2 recedes in any direction not parallel 
to the wall, x 2 ~  + m and (2.18) has a Gaussian-like decay; for instance, 
for a direction normal to the wall, the asymptotic behavior is given by 
(2.19). However, for a direction parallel to the wall, the asymptotic behavior 
is different; one must consider (2.18) as Yl -Y2 ~ +-- ~ ,  for fixed values of 
x 1 and x 2. Since the integral in (2.18) is the Fourier transform of a function 
of t which has a step discontinuity at t = - ~ro~/2, its asymptotic behavior as 
y ~ -  y2 ~ +_ oo is governed by that discontinuity, and is readily obtained 
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by integration by parts: 

e x p ( - I t - ( x ,  + x2)/~/2 ] 2 -  i t ( y , - y2)~}  
;? ] + 

dt 

e x p { - [ t - ( x l  +xz)/~/2 ]2-it(y'-Y2)(-2 } -~a~ (2.20) 

Using (2.20) in (2.18), we now find 

• 1 (2.21) 
(Yl  - Y2) 2 

Therefore, the correlations decay only as the inverse square distance in the 
direction parallel to the wall. 

2.3. Charged Hard Wall 

In Section 2.2, the surface charge density eo has been obtained by 
introducing an excess (or defect) of charged particles in the plasma. We 
show that the same surface layer structure can be obtained by charging a 
wall. 

We now assume that the plasma lies outside a circle of radius R. This 
circle carries a "surface" charge density - e o ,  i.e., its total charge is 
-2~reoR. The plasma is made of N particles of charge e, in a background 
of charge density - ep = - clara2; again we choose a as the unit of length 
(a = 1). The background is assumed at once to extend to infinity (this 
means that the background was first confined between two concentric 
circles of radii R and R',  R '  > R, and the limit R ' ~  ~ has already been 
taken). The potential energy is 

N 
V = V 0 + e 2 E ( 1 r ~  - a In ri) - E I n [ r / -  rj[ (2.22) 

i=l N>~i~j>~l 

where 

a = R 2 _ 2~raR (2.23) 

Each r i is in the range (R, oo). When F = eZ/kBT = 2, following the same 
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steps as in Section 2.1, one finds again n-body densities of the form (2.8), 
where now 

'4-' (Z,Z;) 
K(z,z;)= ,=02 r(iu ) (2.24) 

F is the incomplete gamma function 

F(Z + a + 1,R 2) =f,,~e-",,'+~ (2.25) 

As long as N is finite, we expect that the particles will occupy, outside the 
circle of radius R, an annular region of area N/p (cf. Section 2.4). In order 
to have this region extended to infinity, we take the limit N-~  oo. Now 

(Z, Zj* )'+~ (2.26) K(ZiZT ) 
- r ( t +  + 1,R l = 0  

For studying the neighborhood of a plane charged hard wall, we set 

Z, = R + z i (2.27) 

and take the limit of (2.26) as R ~ o% for fixed values of a and z,.. The 
dominant values of l + a in (2.26) are close to R 2, and (2.25) can be 
replaced by its asymptotic form 

7r e x p [ - ( / +  ( l +  a)ln(l  + F(l+a+ 1,R2)--(-~)'/ZR a ) +  ~)] 

• [ l + ~( l + a - R2 ) (2.28, 

The calculation goes on as in Section 2.2, and one obtains again (2.15) and 
the same n-body densities, with slowly decaying correlations in the direc- 
tion parallel to the wall. 

Therefore, the wall charged with a "surface" charge density - e a  
induces in the plasma a surface layer with a "surface" charge density eo, 
identical to the one which has been studied in Section 2.2. This result 
confirms our expectation that the surface layer has a structure determined 
by its surface charge density, and does not depend on the way in which this 
surface density has been attained. 

2.4. Soft Wall 

A soft wall, which can also be studied exactly, is obtained by having 
the particles confined by the background itself. We consider again N 
particles in a circular background, and make at once the radius of the 
background infinite, for a fixed value of N. It will be shown that the 
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particles gather in a circular region of area N / p ,  and the edge of this region 
will be studied, in the limit N---> ~ .  

The potential energy is of the form (2.1), with each r i now in the range 
(0, ~) .  The n-body densities are again given by (2.8), where now 

N--1 (ZiZj* )l (2.29) 
= E t! l~0 

Since we expect the particle distribution to have a radius of the order of ~ -  
and we want to study the edge of this distribution, we set 

Zi = - ~ 4" zi (2.30) 

and take the limit N ~ ce in (2.29) for fixed values of z i. Using Stirling's 
formula in (2.29), we obtain 

N--I 
exp(-ZiZj* )K(ZiZj* ) ~  E (2~/)-] /2exp(-ZiZj* + llnZiZj* 4- l -  l lnl)  

l=0 (2.31) 
The calculation goes on as in Section 2.2; one obtains, in the limit N ~  oo, 

e x p ( -  z, zj* zj* ) = g 1 + (2.32) 

Using (2.32) in (2.8), one finds the one-body density (6) 

pO)(x) = #�89 [1 + ~ ( x ~ - ) ]  (2.33) 

Thus, the background does behave like a soft wall. With our choice of 
coordinates, the distance x is measured from the plane on which the 
particle density has half its value in the bulk. On one side of this plane 
(x > 0), the particle density quickly approaches the uniform value 0 which 
neutralizes the background; on the other side (x < 0), the particle density 
falls to zero. 

The truncated two-body density is now, from (2.17) and (2.33), 

Op ) (z],z2) = -p2exp( - I z ,  - g212) ~ 1 q" (I) ~-  (2.34) 

Through a shift of the integration variable in the definition (2.13) of the 
function ~, (2.34) can be rewritten as 

p(T2)(Z1,Z2) = - -p2exp[ - - (Xl -  X2) 2] 

I 1 f ( x , + x 2 ) / ~ e x p [ _ t  2 _  i t ( y , - / 2 ) V ~ ' ]  (2.35) X ~-- _~  
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The asymptotic behavior of (2.35) when particle 2 goes to infinity is similar 
to the one which was studied in Section 2.2. If particle 2 recedes in any 
direction not parallel to the wall, x 2 ~  +_ oo, and (2.35) has a Gaussian-like 
decay. However, for a direction parallel to the wall, the asymptotic behav- 
ior of (2.35), obtained by integration by parts, is 

p(2)(Zl, Z2)~_O2exp[--2(x2 + x2)] 
(2.36) 

2~r(yl - y2) 2 

this is again a decay rate which goes only as the inverse square distance. 
Finally, let us remark that the soft wall which has just been studied 

can be considered as a limiting case of a hard wall, when the surface layer 
of the plasma carries a "surface" charge density eo and o ~ - o o .  In this 
limit, there is an infinitely large defect of particles near the wall, and the 
edge of the particle distribution must be at an infinitely large distance 
Io[/O = ~r[a I from the hard wall; the particles "feel" only the background, 
and no longer the hard wall. Indeed, in the limit a ~ -  ~ ,  q)(t) can be 
replaced by 1 in (2.15), which becomes, through a shift of the integration 
variable, 

e x p ( -  ZiZj* )K(ZiZj* )"-, "~ 1 + d9 ~/2 

in this way, we do recover the expression (2.32) appropriate to a soft wall, 
with, however, a shift of the origin (the midpoint of the soft wall is now at a 
distance  1ol of the original hard wall, as it should be). 

2.5. The Screening Cloud near a Wall 

The perfect-screening sum rule is well known in bulk Coulomb sys- 
tems: a particle of charge e surrounds itself with a screening cloud the 
average charge of which is exactly - e .  In the present model, it can be 
shown that this is also valid near a wall. The sum rule is 

fp(r  2) (rl, r2) dr 2 = - 0 (l)(rl) (2.38) 

It holds for the hard-wall case of Sections 2.2 and 2.3 as well as for the 
soft-wall case of Section 2.4. The derivation of (2.38) is a straightforward 
calculation using the integral representations of p(2) and p(l). 

In the bulk, the screening cloud is spherically symmetrical. Near a 
wall, it is not, and the particle plus cloud system has an electrical dipole 
moment p in the direction normal to the wall; it was explained in the 
Introduction how this dipole moment prevents the truncated two-body 
density from having a fast decay in every direction. For a particle at a 
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position rl, the value of the dipole moment along the x axis is 

_el f ( X  2 -- Xl)p(2) (rl, r2) dr2 (2.39) p - 

The integral in (2.39) can be calculated with the use of the integral 
representations of p(r2~; the results are 

f ( x 2  - x,)p(r 2) (rl, r2) dr2 = - 

for the hard-wall case, and 

e x p [ - 2 ( x ,  + vro) 2] 

(2~r 3)'/z[1 + qS(- ~ro~)  ] 

f ( x  2 -- X,)p(T 2) (rl, r2) dr 2 = - (8~r 3) -1/2exp( -- 2x~) 

for the soft-wall case. 

(2.40) 

(2.41) 

3. THE WEAKLY COUPLED O N E - C O M P O N E N T  PLASMA 

3.1. The Pair Correlation Function near an Uncharged Hard Wall 

In bulk Coulomb systems, the best-known way of computing pair 
correlation functions is the linearized Debye-H/ickel  approximation. This 
approach is believed to provide the leading term in an expansion with 
respect to the coupling constant, and thus it gives correct results in the 
weak-coupling limit. 

For studying the correlations of a weakly coupled plasma near a wall, 
it is therefore a very natural idea to extend the Debye-Htickel  method. 
This is what will be done in this section, for the simplest Coulomb system, 
i.e., the one-component plasma. Both the three-dimensional and two- 
dimensional cases will be treated. 

We consider a u-dimensional one-component plasma (v = 2,3) con- 
fined in the half-space x > 0. The plane x = 0 is an uncharged hard wall, 
which contains the origin. A vector r is defined by its components (x, y), 
where y is the set of the v -  1 components parallel to the wall. The 
interaction between two particles at a distance r from one another is 

v ( r )  = - e Z l n ( r / L )  (v = 2) 
(3.1) 

v ( r )  = e 2 / r  (t, = 3) 

The half-space x > 0 is filled with a uniform background the charge density 
of which is - e 0 ,  and particles of charge e the bulk density of which is 0. 

The pair-correlation function h is defined from the one-body and 
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two-body densities by 

O(2)(rl, r2 ) _ p(l)(rl)p (1)(r2) = 1@2) (rl, r2 ) = pc l)(rl)p(1)(r2) h (rl, r2) (3.2) 

The direct correlation function c is defined from h by the Ornstein- 
Zernicke relation 

c(rl, r2) +fh(rl ,  r3)o(l)(r3)c(r3,r2)dr3 (3.3) h(rl, r2) 

We now come to the linearized Debye-H/ickel  approximation. 
Near the wall, the one-particle density 0(l)(x) is distorted and differs 

from its bulk value 0. However, since we are studying a weakly coupled 
system, we may use a successive approximation scheme. In zeroth-order 
approximation, O(x) is the step function, p(l)(x) = 0 if x < 0, O(1)(x) -- p if 
x > 0; this zeroth-order p(x) will be used for computing the pair-correlation 
function. Then, in Section 3.2, this pair-correlation function will be used in 
the first equation of the BGY hierarchy for computing a more accurate 
one-particle density. 

A simple way to obtain the Debye-Hiickel  approximation is to take in 
(3.3) for the direct correlation function the approximate form 

c(r,, r:) = - Bv(lr 2 - r,[ ) (3.4) 

Thus, the pair-correlation function h obeys the equation 

h(rl,r2) = -flv(Ir2 - rll) - flpf~3>oh(r, r3)v(lr2 - r31) dr3 (3.5) 

Another, equivalent, derivation of (3.5) is based on the linear-response 
theory: ph(r 1, r2) is the change in density at r 2 when a particle is added at r 1, 
and (3.5) states that this change in density is the linear response to both the 
potential created by the particle at r I and the potential created by the 
particle distribution oh itself. 

The integral equation (3.5) can be transformed into a pair of partial 
differential equations. Note that h is also defined for x 2 < 0 by (3.5) itself. 
Taking the Laplacian A 2 with respect to r 2 in both sides of (3.5), one obtains 

( A  2 - -  x2)[ph(rl, r2)] = ~2a(r2 - rl) (xi ,x 2 > 0) (3.6) 

A2[oh(rl,r2) ] = 0 (x I > 0, x2 < 0) (3.7) 

where 

x = [ 2 ( v -  1)qrfle2o] '/2 (3.8) 

(x -  l is the Debye length). (1'9) Equation (3.6) is just the familiar linearized 
Poisson-Boltzmann equation in the plasma, while (3.7) is the Poisson 
equation in the vacuum. These equations must be solved with the condi- 
tions that h and 3h/~x a are continuous on the plane x 2 = 0 (since h is 
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proportional to the electrostatic potential). One reduces the problem to a 
one-dimensional one by using the Fourier transform on the y coordinates 

t~(Xl, X2,1)= fexp[il.(y2-Yl)]h(rl, r2)dY 2 (3.9) 

In terms of this transform, (3.6) and (3.7) become 

)E ,l _[2 ph(xl,x2, l = 0  

(XDx2>O) (3.10) 

(xl > 0, x2 < 0 ) (3.11) 

A A 

The solution of (3.10) and (3.11l, with the conditions that h and dh/dx 2 are 
continuous at x 2 = 0 and that h---> 0 as x 2 ~  +_ oo, is easily found to be 

d;(Xl ,X2, l )  = ~2 
2Qr 2 4" 12) 1/2 

X/exp [  - ( x  2 4- 12)1/21x2 - Xl] ] 4- (/r 4- 12) 1/2 -- 1 
[ (1r 2 q- 12) 1/2 4- l 

exp[ - ( x2 + 12)1/2( x,  + x2)]1 ( x t ' x2  > O) 

J 
(3.12) 

o ~ ( x 1 , x 2 ,  Z) = - ~ i exp [ _(.2 + l 2) 1/% + tx l 
1/24- (~2 l 2 ) + 

(Xl > o, x2 < o) (3.13) 

where l = I11/> 0. The pair correlation function in coordinate space is the 
Fourier transform inverse of (3.9) 

h(rl,r2) _ 1 fexp[_il.(yz_yl)]l~(x,,x2,l)dl (3.14) 
(2~) ~-1 

where/~ is given by (3.12); we do not perform this transform explicitly. 
It may be noted that, if we use (3.13) in (3.14), the quantity h(rl, r2) 

which is obtained does have a physical meaning: one sees from (3.5) that 
-(fie)-lh(r2,rl) is the average electrostatic potential at a point r 2 outside 
the plasma (x z < 0), knowing that there is a plasma particle at r 1 (xl > 0). 

The asymptotic behavior of the pair correlation function h (r 1, r2), when 
particle 2 goes to infinity, is easily obtained from (3.12) and (3.14). If 
particle 2 recedes in any direction not parallel to the wall, x 2 -~ + oo, and h 
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decays exponentially. However, if particle 2 recedes in a direction parallel 
to the wall, one must consider the asymptotic behavior of (3.14) as 
]Y2 - Yll ~ ~ ,  for fixed values of xl and x2; this behavior is governed by 
the kink of (3.12) at ! = 0 and is (see, e.g., Ref. 7) 

e x p [ - ~ ( x  1 + x2)] 
0h( r" r2 )~  - (1' - 1)TrlY2 - Y,I" (3.15) 

Therefore, in the direction parallel to the wall, the correlations decay only 
as the inverse square (v = 2) or the inverse cube 0' = 3) of the distance. 

From (3.9) and (3.12), one sees that the perfect-screening sum rule is 
satisfied: 

0fx2 > o h (rl, r2) dr 2 = - 1 (3.16) 

The screening cloud, however, has a dipole moment which is 

eo(2>o h(rl'r2)(x2Jx - xl)dr2= - e ~ - ' e x p ( -  xxl) (3.17) 

3.2. The One-Particle Density near an Uncharged Hard Wail 

We now come back to the one-particle density p(l) and compute it, 
using the approximate pair correlation function of Section 3.1 in the first 
equation of the BGY hierarchy. Let 

r I - -  r 2 
e F ( r ~  - r2)  = e ir ' _ r2l~ ( 3 . 1 8 )  

be the electrical field created at r I by a particle located at r 2. The average 
electrical field at r~ is 

E(x,)=ef V(r,-r2)[O(')(x2)-p]dr2 (3.19) 
x2>O 

The first equation of the BGY hierarchy may be written as 

Vp(1)(xl) = [3eE(x,)p(l)(xl) + [3e2~ F(r L - r2)0(7})(rl, r2)dr2 (3.20) 
X2>0 

where p(r 2) is related to h by (3.2). In the weak-coupling limit, both p(l) _ p 
and h are small quantities, and it is permissible to linearize (3.20) with 
respect to these quantities; one obtains 

v p ( l ) ( x l )  = BeoE(x,) + Be2p2~2>0F(r , - r2)h(r,,r2)dr 2 (3.21) 

The electrical field (3.19) is along the x axis; after the integration upon 
Y2 has been performed, the x component becomes 

Ex(xi)=(p-1)~re{ foX'[p(x2)-p]dx2- fx:[P(x2)-p]dx2} (3.22) 
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The last term of (3.21) is also along the x axis, and it can be computed 
using the Fourier transform of F x (the x component of F) with respect to y 

O'- 1)r~x 
P(x,l) = f e x p ( i i . y ) F x ( r ) d y =  Jxl exp(-llxl) (3.23) 

A 
and h(xpx2,  l ) given by (3.12): 

/(Xl) --- f le2p2( Fx(r , - r2)h(r,,r2)dr 2 
�9 I x  2 > 0 

fie202 ( F ( x , -  x2, l)l~(x,,x2, l ) d l d x  2 
(2-~y-' .,x~>o 

x4 oo exp [ ~_ 2__x, (xz_____+ / 2) ~22 ] 
- (v--])2~r s [(x2+ 12)1/2 + l] 2 lp-2dI (3.24) 

Therefore, Eq. (3.21) can be rewritten as 

d 0 ]  - 

= f ( x )  (3.25) 

where f ( x )  is given by (3.24). 
Equation (3.25) must be solved with the boundary condition that 

p(~)(x)- O ~ 0  as x---> + ~ .  If f ( x )  were a simple exponential exp(-px),  
the solution would be found as a combination of exp(-  ~x) and exp(-px), 
namely, 

x exp( - xx) - p exp(-px)  
p(l)(x) - p = (3.26) 

] ) 2  K2 

The actual f ( x )  is a superposition of exponentials, and the solution is the 
corresponding superposition of terms of the form (3.26): 

/r 
p ( ' ) ( x )  - p - (v -  1)2,~ 

• s ~ e x p ( - x x ) -  2(K2+1/212)I/2exp[-2x(xZ + 12)'/2] 
oo l ~- 2 dl 

[(~2 + 1 2 ) +  l]2(3x2 + 4/2) 

(3.27) 

The integral (3.27) can be numerically computed as a function of x. 
The resulting density profiles are shown in Fig. 1, for both the two- 
dimensional and the three-dimensional cases. There is an oscillation in 
p(t) (x) - O, and the total surface charge density is easily shown to be zero, 
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Fig. 1. The one-body densities for a weakly coupled one-component  plasma, in two (u = 2) 
or three (p = 3) dimensions, near an uncharged hard wall. 

as expected along an uncharged wall: 

I ~ 1 7 6  0( ')(x) - O ] d x =  0 (3.28) 

When x ~ + m,  pO)(x) - O decays exponentially as e x p ( -  xx). 
The density at the wall is of special interest, since it is related to the 

"kinetic pressure" which differs from the usual "thermal pressure" for a 
one-component plasma. (1~ l) At x = 0, the integral (3.27) can be performed 
analytically, with the results 

O(~)( 0 ) - o = -  l n 3 - 1 +  ~ = - 0 . 7 0 3  4 

(3.29) 
1 - 31n3 + ~r~- x 3 0.786x 3 (p = 3) 

0(1)(0) - 0 = - 4 24~r - 24~r 

The corresponding kinetic pressures are 

( p(k) = k~To(l)(O) = O kBT - 0.703 -~- (v = 2) (3.30a) 

p=3) (3.30b) 

while the thermal pressures are (]'2) 

p ( 0 ) =  o ( k B T -  e_~_~) ( v =  2) (3.31a) 

p(O) = P -  ~ kBT  ( v = 3 )  (3.31b) 

For the two-dimensional system, (3.31a) is valid for all couplings, while 
(3.30a) is only the weak-coupling limit; however the value o fp  (k) at fl eE = 2 
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is also known ~6) and is pk~ Tln2.  For the three-dimensional system, both 
(3.30b) and (3.31b) are weak-coupling limits. It can be checked that the 
sum rule of Choquard et al., (~) 

p(k) _p(O) =(p_ 1)2~re2Ofo~[p(,)(x)_o]xdx (3.32) 

is satisfied by our expressions. 

3.3. Weakly Charged Hard Wall 

If the hard wall carries a weak surface charge density - e o ,  it is 
possible to compute the one-body density up to the first order in o. The 
plasma is still assumed to be weakly coupled. 

The one-body density 0 (1) is a function of o, and it obeys the sum 
rule ( 13~ 

ap('(x~) 
- 2(p  - 1)~Be2Jx2>opp~(r l ,  r2)(x2 - x~)ar2  (3.33) 

[ ,  

oa 
Using the weak-coupling approximation p(r 2) = p2h and (3.17), one finds the 
correction to p(l~ of order a: 

60 (l)(x) = o~ e x p ( -  ~x) (3.34) 

The surface charge density of the plasma is now eo, as it should be: 

f 0 ~ p  (l~(x) dx = o (3.35) 

Note that (3.34) is just the well-known simple linearized Chapman-  
Gouy expression, which has to be added to the one-body density for an 
uncharged wall, as given by (3.27). A more sophisticated 60 (1) cannot be 
obtained in the present weak-coupling theory. 

4. THE WEAKLY COUPLED TWO-COMPONENT PLASMA 

The theory of Section 3 can be easily generalized to a two-component 
symmetrical plasma, in two or three dimensions. We now consider a system 
of particles of charges e and - e ,  with equal number densities p. In the 
three-dimensional case at least, in addition to the Coulomb forces, there 
must be short-range repulsive forces between particles of opposite sign to 
prevent them from collapsing towards one another; however, within an 
approach h la Debye-Hfickel,  it is not necessary to consider explicitly these 
repulsive forces. The plane x = 0 is an uncharged hard wall. 

One must now consider pair-correlation functions h~B(r 1, r/), where the 
Greek indices denote the species ( +  or - )  of the particles. Equation (3.5) 
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is replaced by  the system 

h ~  (r,, r2) = - f l ~ v ( l r  2 - r~l) - / 3 0  2 ~" ho lm,  r~)e~v(Ir2 - r31) dr~ 
3' "-'x3 > 0 

(4.1) 

where v is still defined by (3.1); e~  is + 1 if a = fl and - 1 if a =/= ft. One 
sees at once from (4.1) that the symmetrical  combinat ions vanish: 

h++ + h + _  = h _ _  + h _ +  = 0 (4.2) 

The antisymmetrical combinat ion 

h A = h + + - h +  = h_ -h_+ (4.3) 

obeys the equation 

h A (r 1, r2) = - 2/3v(lr 2 - rll ) - 2/~Pfx3 >oh,~ (r l, r3)v(Ir 2 - r31 ) dr 3 (4.4) 

The comparison between (3.5) and (4.4) shows that h A has the same form as 
the function h considered in Section 3.1, provided the inverse Debye  length 
x is now defined as 

x = [4(v - 1)qrfle2p ]~/2 (4.5) 

instead of (3.8). 
The linearized BGY equation (3.21) is replaced by the simpler equa- 

tion 

V p a ( l ) ( X l )  = / ~ e 2 0 2 (  F(r I - -  r2)ha(rl,r2)dr 2 ( 4 . 6 )  
,,IX 2 > 0 

(for symmetry reasons, near an uncharged wall, the one-body density p~l) 
does not  depend upon the species a, and the average electrical field E 
vanishes). With the definition (4.5) of x, one now finds 

f(xl) - -  f le2p2( Fx(rl - r2)hA (r 1, r2) dr2 
dX2>0 

K4 ~exp[-2x'(~2+12)'/2] l~-2al (4.7) 

- ( p - - - 1 ) 4 r r  f0 [(~2+12),12+i]2 
and the solution of (4.6) is 

J X  

_ _  K 4 ~" 
O' - i)8.-.. Jo 

exp[-2x( 2 + t2)'J ] 
_ _  l . - 2 d l  

(4.8) 
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Fig. 2. The one-body densities for a weakly coupled symmetrical two-component plasma, in 
two (v = 2) or three (v = 3) dimensions, near an uncharged hard wall. 

The integral (4.8) can be performed explicitly. One finds 

( ' 1 o~')(x) - o = 8,~ (2,,x) - 2,&--- 5 ,,x 

x 3 [ ( 2@3x 3 1 1 )exp(_ 2xx) _ 1 K2(2xx) ] O~'~(x) - 0 = 1-& + ~ + 

( v =  3) (4.9) 

where K 2 is a Bessel function. These density profiles are shown in Fig. 2; 
they are monotonically increasing functions. The net charge density is 
everywhere zero: 

e[ O~)(x) - p~l(x) ] = 0 (4.10) 

When x ~ + ce, O~O(x), P decays exponentially essentially as e x p ( -  2xx). 
At the wall, the densities (4.9) become 

K2 = p ( 1 -  fie2) ( v=2)  
P~(0(0) = P - 16--'-~ T 

K3 (v = 3) 
p~(~ = o 48~r 

(4.11) 

Therefore, the pressures obtained from (4.11), 

p = k 8 T[O~ ) (0) + 00)(0) ] (4.12) 

do have the same values as the ones which are obtained by calculations in 
the bulk. (~,12) 

If the hard wall carries a weak surface charge density - e o ,  the same 
argument as in Section 3.3 shows that the correction to O~ (0 of order o is 

~p~)(x) = + o ~  e x p ( -  Kx) (4.13) 
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The surface charge density of the plasma is ea, as it should be: 

fore[ ~O(+ 1) (x) - ~OQ)(x) ] dx= eo (4.14) 

Again, (4.13) is just the simple linearized Chapman-Gouy expression. 

5. CONCLUSION 

We have studied the pair correlations near a plane wall. These correla- 
tions have a slow (algebraic) decay in the direction parallel to the wall. 

Recently, sum rules for inhomogeneous Coulomb systems (~4) have 
been proved under the assumption of a not too weak decay of the 
correlations; for instance, one of these sum rules states that the system 
formed by a particle plus its screening cloud has no electrical dipole 
moment. Although there are other very interesting nontrivial situations in 
which these sum rules hold, the underlying assumption about the decay rate 
of the correlations is not fulfilled in the cases which have been considered 
in the present paper, and some of the above-mentioned sum rules do not 
hold near a plane wall; for instance, the system formed by a particle plus its 
screening cloud does have a dipole moment. 

For a two-dimensional system of particles interacting through a 1/r  
potential (electrons confined in a plane), the pair correlation function 
decays like r -3, at least in the weak-coupling case. (~5'~6) It is rather natural 
to find the same decay rate near a wall, in the direction parallel to the wall, 
for a three-dimensional system with the same 1/r  potential; since the 
screening cloud around a given particle is localized along the wall, it has 
indeed features reminiscent of a strictly two-dimensional geometry. 

We have also studied the one-body density near a plane wall. The 
one-body density is related to the pair correlation function by the first BGY 
equation. For the two-dimensional one-component plasma at F = 2, we 
have exact expressions which of course satisfy the BGY equations. Less 
trivially, for weakly coupled plasmas, we have used the weak-coupling form 
of the pair correlation function in the first BGY equation in order to 
compute the weak-coupling form of the one-body density. Our approach is 
a consistent one, and it passes the test that the pressures p(O) in (3.32) or p 
in (4.12), obtained from the one-particle density near the wall, are each 
equal to the corresponding pressure obtained by a thermodynamical calcu- 
lation in the bulk. 

Many calculations of the one-body density near a plane wall have 
appeared in the literature. (17-22) Some of them (z2) use a Poisson- 
Boltzmann equation for the pair correlation function, as we did in (3.6). 
However, it seems that the approximations in these approaches do not 
incorporate the specific feature of the weak decay of the correlations in the 
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direction parallel to the wall. It might be that this feature is an essential 
one. 

Some of our results in Sections 3 and 4 have been previously obtained 
by other authors. (23'24) 
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APPENDIX: CHARGE DENSITY INDUCED BY A CHARGE 
SITTING OUTSIDE THE PLASMA 

The calculations in Sections 2.2. and 3.1. can be easily extended for 
computing the charge density C(r21r0 at a point r 2 inside the plasma 
(x 2 > 0), when there is a particle at a point r 1 outside the plasma (x 1 < 0). 

For the two-dimensional one-component  plasma at I" = 2, 

p(r 2) (r,, r2) 
= ( A . 1 )  C(r21rl) e p(O(r, ) 

where 0 (1) and p(r 2) are given by (2.16) and (2.18), respectively. Now, 
x 2 > 0, x I < 0. An interesting limiting case is when x I ~ - ce, i.e., when the 
external particle is at a macroscopic distance from the plasma. One easily 
derives the corresponding behaviors 

exp ( -2x~)  
p(l)(xl)"" 0 (2~r),/2[x,I (A.2) 

P(r2) ( ' "  r2) ~ - p 2 e x p [  - ( x '  _ x2)2] 1( 2 ),/2 e x p [ -  (x, + [ x , [  + i(y, x2)2/2]-y2) 12 
(A.3) 

Therefore, 

C(r2lrl)~-2(2)'/2ep 
The surface charge density then is 

(= c(r2 I,,) d x 2 - -  - 
,1o 

Ix , lexp( -  2x~) 

x~ + (y~ - y2) 2 

elx~l 

(A.4) 

(A.5) 
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and (A.5) is indeed what two-dimensional macroscopic electrostatics gives 
for the surface charge density induced in a semi-infinite conductor by a 
charge e located at a distance Ixll from that conductor. 

For a weakly coupled one-component plasma, 

C(r 2 [rl) = eph (rl, r2) (A.6) 
A 

h is given by (3.14), where, however, h(x  1, x 2, l) must now be computed in 
the case x I < 0. Some of the formulas of Section 3.1 have to be modified, 
and one now finds 

A 1r 
ph(x , , x2 ,  l ) =  _ exp[_  llx, I _ ( ~ 2 +  12)1/2x2] 

(t~ 2 + 12) ~/2 + l 

(x l < 0 , x  2>/0) (A.7) 

= + ) , /2  _ z 
ph (xl ,  x2, l )  exp[ l(Ixll + L 21) ] 

[ + 12),/---zTl 
-1 

- e x p ( -  l lx  , - x21)} (x1,x 2 ~< 0) (A.8) 
) 

The induced charge density (A.6) is given by using (A.7) in (3.14). If (A.8) 
is used in (3.14), - ( f i e ) - l h ( r p r 2 )  is the electrostatic potential at r 2 outside 
the plasma. More explicit formulas are easily found in the limiting case 
x I ~ -  oo, i.e., when the distance Ixll is macroscopic. The corresponding 
behaviors are 

~lxllexp(- ~x2) 
eoh ( r " r2 ) "  (v - 1)Tr[x~ + (y, - y2)2] ~/2 (x, ~ 0, x 2 >1 0) (A.9) 

A 

~e h(r,,r2) ~ 1  { v ( l r , - r 21 ) -  v(E(x , + x2)2+ (Y, -  y2)2]'/2) } 

( x l , x  2 < O) (A.IO) 

where v is the potential (3.1). The surface charge density then is 

eph(r, ,r2)dx2= - elxll (A.11) f 
ao (v - 1)Tr[ x~ + ( y , -  yz)2] "/2 

Again, (A.10) and (A.11) are indeed the correct expressions from macro- 
scopic electrostatics; (A.10) is the electrostatic potential outside a semi- 
infinite conductor when a charge e is located at a distance [xll from this 
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conductor (i.e., the potential of the charge plus the potential of its image), 
and (A.11) is the surface charge density on the conductor. 

It may be noted that, when lY2 - Y~I ~ oo, the induced charge density 
(A.4) or (A.9) behaves like lY2 - Yll -~ also in the present case. 
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